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FORMULATING THE BROGDEN CLASSIFICATION FRAMEWORK AS A 
DISCRETE CHOICE MODEL 
 
 
EXECUTIVE SUMMARY 
 
 
Research Requirement: 
 

In the 1950’s Brogden proposed a number of related approaches for measuring the 
classification efficiency of a predictor battery for assigning applicants to different jobs (Brogden, 
1954; Brogden, 1955; Brogden, 1959). These approaches are all based on optimal classification 
in which applicants are assigned to the jobs for which they have the highest predicted 
performance. More recent implementations of Brogden’s framework have been developed for 
computing the mean predicted performance (MPP) under different statistical distributional 
assumptions (De Corte 2000; Chen and Darby 1997). These implementations, however, do not 
address classification policy constraints (e.g., cut scores and gender restriction), applicant 
preferences, or the impact of other recruiting/classification tools available to the Army (e.g., 
monetary incentives that channel applicants to particular job training). To obtain policy guidance 
it is important to reformulate Brogden’s optimal classification framework as a statistical model 
that can inform operational classification problems. 

 
A discrete choice model (DCM) is a rich modeling framework that is concerned with 

agents making choices among alternatives. In the Army classification situation, the discrete 
choice process can describe applicants choosing among job training opportunities. The elements 
in Brogden’s work are comparable to those in a DCM; for example, assigning an applicant to the 
job with the highest predicted performance corresponds to an individual choosing an alternative 
with maximum utility. The goals of this effort are: (a) to demonstrate the feasibility of 
formulating Brogden’s optimal classification problem as a DCM; (b) to show how a DCM can 
accommodate classification policy constraints, such as cut scores and gender restrictions; and (c) 
to explore how a DCM could be applied in an expanded classification framework that takes into 
account applicant preferences. 
 
 
Procedure: 
 

To show that the Brogden classification framework can be formulated using a DCM 
framework, we rescaled the augmented criterion estimates proposed by Brogden using an 
arbitrarily large constant and then added independent standard Gumbel errors to obtain the 
mathematical structure of utility equations in a DCM. Using this transformation, we derived a 
mixed multinomial logit (MMNL) classification model that is analytically comparable to de 
Corte’s (2000) implementation of Brogden’s model based on an assumed multivariate normal 
(MVN) distribution for criterion estimates. We also derived an empirical or sample based 
multinomial logit (MNL) classification model that can accommodate personnel classification 
policy constraints and is robust with regard to the distributional assumption for criterion 
estimates. We illustrated the MNL optimal classification model by evaluating the classification 
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efficiency potential of the Armed Services Vocational Aptitude Battery (ASVAB) and the 
Tailored Adaptive Personality Assessment Screen (TAPAS) for minimizing 6-month attrition in 
four military occupational specialties (MOS) under pure classification and selection-
classification models and varying classification policy requirements. Lastly, we described a 
hybrid approach for evaluating classification potential of predictors that account for applicant 
preferences. 
 
 
Findings: 
 

Brogden’s optimal classification framework for evaluating potential classification 
benefits of predictors can be solved using DCM methods. The population based MMNL 
classification model was shown to be equivalent to the MVN-based optimal classification model 
of de Corte. The empirical or sample based MNL classification model provides a rich framework 
that can accommodate personnel classification policy constraints, such as cut scores and gender 
restriction, and is robust to the functional form and distribution of the criterion estimates. In 
illustrative examples, while changes in average estimated attrition due to inclusion of policy 
constraints were negligible, they were consistent with anticipated effects and are expected to 
become stronger with more valid criterion models and greater differentiation in eligibility 
constraints among jobs. The possibility of using criterion estimates that are not normally 
distributed was shown to have practical implications for the analysis results. 
 
 
Utilization and Dissemination of Findings: 
 

The DCM methods developed in this report provide alternative approaches for evaluating 
potential classification benefits of predictors that are numerically convenient and can 
accommodate classification policy constraints. For classification problems where sufficient 
applicant data are available, the empirical MNL classification model can more accurately 
evaluate potential classification efficiency compared to population-based classification models 
(i.e., de Corte’s approach and MMNL classification models). 
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FORMULATING THE BROGDEN CLASSIFICATION FRAMEWORK AS A 
DISCRETE CHOICE MODEL 

 
Research Requirement 

 
In the 1950’s Brogden proposed a number of related approaches for measuring the 

classification efficiency of a predictor battery for assigning applicants to different jobs (Brogden, 
1954; Brogden, 1955; Brogden, 1959). These approaches are all based on optimal classification 
in which applicants are assigned to the jobs for which they have the highest predicted 
performance. Earlier efforts by Brogden and other researchers (e.g., Alley & Darby 1994; Chen 
and Darby 1997) for measuring the classification efficiency assumed equal predictor validities, 
equal predictor inter-correlations, and equal job quotas. Advances in mathematical computing 
have made it possible to apply Brogden’s general approach for measuring classification 
efficiency with unequal predictor validities and inter-correlation among the predictors (e.g., De 
Corte 2000) – for example, to evaluate the incremental classification efficiency of non-cognitive 
experimental predictor batteries beyond the ASVAB. 

 
While current implementations of Brogden’s framework may be sufficient for evaluating 

the potential incremental classification efficiency of competing experimental predictor batteries, 
they do not offer guidance for formulating operational classification policies. These 
implementations do not address classification policy constraints (e.g., cut scores and gender 
restriction), applicant preferences, or the impact of other recruiting/classification tools available 
to the Army (e.g., monetary incentives that channel applicants to particular job training).  It is not 
surprising, therefore, that realized classification efficiency is often much lower than levels 
suggested by optimal MPP.  

 

To obtain policy guidance it is necessary to reformulate Brogden’s optimal classification 
framework as a statistical model that can inform operational classification problems. In this 
regard, a promising direction is to formulate Brogden’s framework as a discrete choice model 
(DCM). Choice analysis is concerned with how agents make choices among alternatives, where 
some of the factors are observable to the researcher and others are not (and are treated 
stochastically).  In the Army classification situation, the discrete choice process can describe 
applicants choosing among job training opportunities. The elements in Brogden’s work are 
comparable to those in a DCM; for example, assigning an applicant to the job with the highest 
predicted performance corresponds to an individual choosing an alternative with maximum 
utility. Beyond algorithmic similarity, a DCM would provide researchers and policy makers 
(when evaluating or formulating classification policy tools) with a statistical framework that can 
accommodate important factors in real world classification. 

The goals of this effort are: (a) to demonstrate the feasibility of formulating the Brogden 
optimal classification framework as a DCM; (b) to show how a DCM can accommodate 
classification policy constraints, such as cut scores and gender restrictions; and (c) to explore 
how a DCM could be applied in an expanded classification framework that takes into account 
applicant preferences as a function of monetary incentives and cognitive / non-cognitive 
predictors. 



 

2 

Background 
 
 

Brogden Classification Framework 
 
Brogden (1959) proposed to measure classification efficiency of a predictor battery using 

the maximum obtainable average predicted performance across all possible ways of assigning n 
applicants to m jobs. This maximum allocation average is also known as the MPP (mean 
predicted performance) and the allocation that produced it is said to be optimal. 

 
In applications, the predicted performance scores of a given applicant for the m jobs are 

often assumed to be jointly distributed as multivariate normal (MVN). Under the special case 
with equal predictor validities, equal predictor inter-correlations, and equal quotas across jobs, 
optimal classification is equivalent to assigning applicants to the jobs corresponding to their 
highest predicted performance scores. Using this heuristic, the MPP can be computed by 
averaging the highest among the m predicted performance scores of applicants. In the general 
case, with unequal predictor validities, or unequal predictor inter-correlations, or unequal target 
quotas, this simple strategy does not work. 

 
Brogden (1955) proposed an assignment strategy based on the augmented predicted 

criterion (or augmented criterion estimate) of applicants, in which job specific constants are 
added to the m criterion estimates of applicants. Each applicant is then assigned to the job 
corresponding to his highest augmented criterion estimate. Brogden showed that by appropriately 
choosing the job specific constants, assigning applicants to jobs in this manner satisfies the target 
job quotas and produces the maximum average predicted performance scores (i.e., the MPP). 

 
Applying Brogden’s augmented criterion estimate assignment strategy involves non-

trivial analytic and numerical computing challenges. Earlier efforts by Brogden and other 
researchers (e.g., Alley & Darby 1994; Chen and Darby 1997) for measuring the classification 
efficiency (i.e. the MPP) of a predictor battery focused on the special case with equal predictor 
validities, equal predictor inter-correlations, and equal quotas. An exception is De Corte (2000) 
who developed an approach for the general optimal classification problem by analytically 
working directly with the multivariate normal joint distribution of the criterion scores. De 
Corte’s approach will be used in this research to represent the general Brogden framework and to 
examine its relationship to DCM methodology. Earlier studies used de Corte’s approach to 
evaluate the optimal classification of experimental predictors in the Army (Ingerick, Diaz, & 
Putka, 2009). 

 
DCM Job Choice Model Applications 

 
In contrast to classification analysis, in which individual applicants are classified to jobs 

to provide maximum benefit for the organization (i.e., maximize MPP), choice modeling focuses 
on identifying jobs that are expected to provide maximum benefit for individual applicants (i.e., 
maximize utility). A Job Choice Model (JCM) is concerned with describing actual applicant job 
choices in relation to their characteristics and the attributes of job alternatives under a random 
utility maximization (RUM) assumption. RUM posits that among all available alternatives, an 
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individual will choose the alternative that has maximum value to him/her. In other words, a JCM 
describes optimal jobs for an applicant while a classification model describes optimal jobs from 
the viewpoint of personnel managers. 

 
Earlier Army personnel classification studies used various forms of the JCM to model 

applicant MOS choices based on data about the specific military occupational specialty (MOS) 
and incentives that were presented to applicants. Diaz, Ingerick, and Sticha (2007a) used a JCM 
based on a nested logit model to simulate applicant’s choice of MOS to support the 
implementation of an unobtrusive, simulation-based evaluation of the Enlisted Personnel 
Allocation System (EPAS;  Sticha, Diaz, Greenston, & McWhite, 2007).  

 
In a later project, Diaz, Ingerick, and Sticha (2007b) extended the model to consider 

prediction of MOS-term of service (TOS) combinations, and applied to analysis of the impact of 
increasing the individual cap on recruiting bonuses. In response to a difficult recruiting 
environment, the Army obtained legislative authority to increase the EB program from $20K to 
$40K. The increased incentives could expand the recruiting market and channel applicants from 
other MOS into ones with higher incentives. The main focus of the study was to estimate the 
channeling effects of expanded alternative bonus programs. 

 
More recently, Diaz, Sticha, Hogan, Mackin, and Greenston (2012) estimated a JCM that 

models Army applicants’ MOS and TOS enlistment preferences as a function of enlistment 
incentives to support the development of a tool that can assist the Enlistment Incentive Review 
Board (EIRB) allocate incentives to the MOS and TOS options that provide the greatest 
incremental benefit to the Army. They implemented the analysis capability of the JCM as a 
proof-of-concept Decision Support Tool (DST) that allows users to specify incentive policy 
scenarios, predict applicant enlistments by MOS and TOS and associated costs for each policy 
scenario, and compare the results across different policy scenarios. 

 
While their goals seemingly compete with each other, the maximization underlying the 

optimal classification model and the JCM are comparable. That is, assigning an applicant to the 
job with the highest predicted performance or criterion estimate corresponds to an individual 
choosing an alternative with maximum utility. In the next section, we will transform the criterion 
estimate to obtain the same mathematical structure as the utility equations, then solve the 
classification problem using DCM estimation procedures. 
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DCM Approximation of Brogden Classification Analysis 

 
In this section we describe how the traditional Brogden classification problem can be 

formulated using a DCM framework. We will begin by summarizing De Corte’s implementation 
of Brogden’s augmented criterion estimate assignment strategy and then propose an alternative 
approximate implementation that borrows ideas from DCM methodology. In a later section, we 
will draw insights from this approximate implementation to propose an approach for conducting 
classification analysis that is more robust with regard to distributional assumptions and can 
accommodate important policy constraints and applicant preferences. 

 
Multivariate Normal Implementation of Brogden Optimal Classification 

 
The following discussion summarizes De Corte’s implementation of Brogden’s optimal 

classification strategy. Our development uses a slightly different approach but closely follows 
the main ideas in his work. With respect to notation used throughout this report, we will use 
upper case letters to represent random variables and lower case letters to represent observed 
(sample) values; random vectors and random values will be presented in bold font. 

 
Classification Outcome Vector 

 
Let the random variable  denote the estimated or predicted criterion score of the ith 

applicant for the jth job. Also assume that the vector of estimated criterion scores for a randomly 
selected applicant, , is distributed as multivariate normal. De Corte developed 
an approach for the general optimal classification problem based on Brogden’s augmented 
criterion estimate assignment algorithm. This algorithm modifies the jth criterion estimate for 
classification purposes by adding a job-specific constant  to obtain the augmented criterion 
estimate . The algorithm assigns the ith applicant to the kth job if 

 for all other jobs  (i.e.,  is the maximum modified assignment 
criterion). Brogden showed that given suitably chosen job specific constants s), applying the 
algorithm to a large pool of applicants will approximately produce the desired job allocation 
quota. 

 
Brogden’s optimal classification assignment strategy can be viewed as mapping from the 

m-dimensional random vector of criterion estimates, , to the 2-dimensional random 
vector , where  is a  random variable that takes its value from the criterion 
estimate for the optimal job (i.e., job with the highest augmented criterion estimate) of the ith 
applicant, and  is a random variable whose value is the index of the optimal job. Note that 

completely describes the outcome of the algorithm for the ith applicant. The joint 
probability density function (PDF) of this outcome vector can be expressed as the product of the 
probability of observing the criterion estimate  for the kth job and the conditional probability 
that this observed score is the highest among all m augmented criterion estimates. That is, 
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The two probability factors in the last line above were completely specified by De Corte. 

The first factor is simply the univariate normal PDF corresponding to the kth criterion estimate 
evaluated at . To evaluate the second factor, De Corte used the lower tail probability of the 

-dimensional normal distribution obtained by conditioning the kth criterion estimate to 
.1

 
 For discussion purposes we will leave the joint probability in the above final form. 

Job Quota Constraints 
 
We now obtain two key components in De Corte’s approach. The first component is the 

system of nonlinear equations representing job quota constraints. These equations equate the job 
quotas to the percentages of applicants that the augmented criterion estimate algorithm assigns to 
the m jobs. These percentages are just the marginal probabilities of  that can be obtained by 
integrating the joint PDF of the outcome vector over all possible values of . Thus, the m job 
quota equation constraints are  

 

 
 

(1)  

 
where the left-hand side integral equals the marginal PDF . Note that the variables in the 

above system of nonlinear equations are the unknown job-specific constants. 
  

Calculating MPP 
 
A second component in De Corte’s approach is the marginal PDF of the predicted 

criterion scores of applicants on their optimal jobs (i.e., the s). We need this PDF to evaluate 
the MPP. It can be derived by summing the joint PDF of the outcome vector  over all 
possible values of . Conceptually, this means anyone of the m jobs can be the optimal job. 
Thus the marginal PDF of  evaluated at  is  

 

                                                 
1 Note that in De Corte’s derivation  is the observed value of the augmented criterion score, while in our 
presentation above  is the observed value of the unmodified criterion score. 
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Note that this marginal PDF involves job specific constants as unknown parameters. To 
completely define this PDF, we solve the job quota constraint system of nonlinear equations for 
the s. 

 
Having defined the marginal PDF of the predicted criterion scores of applicants on their 

optimal jobs, the MPP may now be evaluated by taking the expectation of   
 

 
 

(2)  

 
 

 

 
 
We obtained the third line by noting that  and applying the definition of a 

conditional PDF. The conditional average performance or conditional MPP, , 
is useful for assessing classification efficiency pattern across jobs, while the conditional PDF 

 is useful for describing the distribution of optimal predicted performance 
scores of applicants in the kth job. 

 
 
 



 

7 

 
MMNL Approximation of Brogden Classification Framework 

 
We next propose an alternative approach to the general optimal classification problem by 

borrowing ideas from DCM methodology. This alternative approach is presented below as an 
approximate implementation of Brogden’s optimal classification framework. In the next section, 
we will draw insights from the analytic results derived below to propose a more robust and 
flexible approach for conducting classification efficiency analysis. 

 
Modified Augmented Criterion Estimate 

 
We begin by proposing the modified augmented criterion estimate for the jth job of the 

ith applicant given by 
 

 
 
where the s are independent standard Gumbel random variables,  is an arbitrary scaling 
parameter, and (as before) s are the criterion estimates and s are job-specific constants. 
Note that  is simply a rescaled version of the original augmented criterion estimate,  , 
with an additional Gumbel random variable term. In general the rank ordering of s can 
differ from that of s and, therefore, can lead to a different optimal job for the ith applicant. 
However, we can make  suitably large so that  predominantly determines 
the rank ordering of s. Since scaling does not alter the rank ordering of jobs, a modified 
optimal classification algorithm based on s can approximate Brogden’s optimal 
classification algorithm to a desired degree of accuracy (i.e., both will produce the same 
applicant-job assignments) by choosing an arbitrarily large value of . The idea behind this 
modified augmented criterion estimate approximation is based on McFadden and Train (2000). 
 

We make the following observation before deriving job quota constraint equations and 
the PDF of the optimal criterion estimate of applicants under the modified classification 
algorithm. Given fixed criterion estimates, , the form of the modified augmented 
criterion estimates s follow that of the utility equations of a DCM with an “observed” 
linear component, represented  by , and an “unobserved” component, represented by 
the Gumbel random variable . This means that the conditional probability of a specific job 
having the highest modified augmented criterion estimate given  has the form of the 
multinomial logit (MNL) probability 

 

 
 

Job Quota Constraints 
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Under the modified optimal classification algorithm, it can be shown (see Appendix A) 
that the job quota constraints can be represented by the system of nonlinear equations below, 
with variables s: 

 

 
 

(3)  

 
The system of equations (3) corresponds to (1) in the MVN model. Note that the left-

hand side of each equation above follows the form of a MMNL probability model, with utility 
equations composed of alternative-specific constants (ASC) s, and normally distributed 
“error components” s. The nonlinear equations above comprise the first-order condition for 
the maximum likelihood estimation (i.e., first derivative of the log-likelihood function equated to 
zero) for such an MMNL model. In the job choice modeling context, the left-hand-side is the 
predicted share of the kth job in the population, which is equated to , the percentage of 
applicants that actually chose the kth job. These observations imply that we can solve for the job 
specific constants that satisfy the job quota constraints using an MMNL parameter estimation 
algorithm. Biogeme (Bierle, 2003) model files for carrying out the estimation of selected optimal 
classification problems are specified in Appendix B. 

 
While based on a somewhat awkward interpretation of criterion estimates ( s) as “error 

components,” the above observation provides a connection between Brogden’s optimal job 
classification and DCM from a computational viewpoint. In the next section, we provide a more 
useful conceptual relationship between optimal classification and DCM that will lead to a more 
practical framework for optimal classification analysis. 

 
Calculating MPP 

 
As in de Corte’s method, the MPP can be evaluated by taking expectations using the PDF 

of the estimated criterion score corresponding to the optimal job of a randomly chosen applicant 
under the modified classification algorithm. The PDF under the modified classification algorithm 
is given by 

 
 

Evaluating expectations using this PDF, we obtain the following expression for the MPP (see 
Appendix A): 

 
 

 
 

(4)  

 



 

9 

Note that MPP (4) corresponds to (2) under the MVN model. The PDF  involves 
the unknown job specific constants as parameters. This PDF is completely specified by solving 
the job quota system of nonlinear equations for the unknown constants. 

 
Comparison Between MMNL and MVN Optimal Criterion PDFs 

 
We briefly comment on the relationship between the PDFs of the optimal criterion 

estimate derived by De Corte under the original Brogden classification algorithm and the 
corresponding PDF under the modified classification algorithm. Both PDFs  and  
have the same general form but the terms inside their summation differ slightly. The integration 
in the final expression for is the conditional MMNL probability of identifying the kth job 

as optimal with a normal mixing distribution of dimension (m-1), given by . It 
corresponds to the lower tail probability in , which equals the probability of identifying 

the kth job as optimal using the conditional probit model . Apart from missing 
the MNL probability, the integral in   is evaluated only on the subspace 

. This is because under Brogden’s original algorithm, the remaining 
(m-1) criterion estimates are restricted once the optimal job is identified, while under the 
modified algorithm the (m-1) criterion estimates can be any point in  since the Gumbel 
random variable components can ultimately determine the optimal job. Lastly, it is easy to verify 
that  

 

 
 
so that as  becomes large the integration in  becomes approximately equal to , as 

expected. 
 

Simultaneous Selection-Classification Problem 
 
For completeness, we derive the MMNL approximation model for evaluating MPP under 

simultaneous optimal selection-classification using our proposed algorithm. In selection-
classification, the sum of the m job quotas is less than 100 percent, with the remainder equal to 
the rejection percentage. In his multivariate normal implementation, De Corte handled the 
selection-classification problem by introducing a cutoff value for the marginal PDF of . This 
cutoff value became an additional variable in the system of nonlinear equations representing job 
quota constraints (see equation (9) in De Corte), along with the m job specific constants. For the 
modified classification algorithm, we expand the RUM interpretation of the optimal assignment 
rule. We accomplish this by including an “auxiliary job” where non-accessions or rejected 
applicants are “assigned.” Using index  to identify the non-accession job, the augmented 
criterion estimate (or utility) corresponding to this non-accession job is given by 
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where  is an additional job specific constant and  is an extra standard Gumbel random 
variable that is independent of the other m s. Behaviorally, to identify the optimal job for an 
applicant, we simply treat the non-accession just like any of the other m jobs. In this case, the 
non-accession job is the “optimal job” for an applicant if 

 
 

 
Likewise, we assign the applicant to the kth job if  

 
 

and 
 

 
Using the above optimal assignment rules, the job quota constraint for the selection-

classification problem becomes 
 

 
 
where . Note that the left-hand side expressions are just the probabilities of 
assigning an applicant to the non-accession job and the kth job. As in the classification-only 
problem, solving for the  job-specific constants above can be viewed as an MMNL 
model parameter estimation problem. Mathematically, the constant  is equivalent to the cut off 
value in De Corte’s approach. It might be worth investigating if other RUM models can be 
applied to solve other variations of classification (e.g., multi-stage, etc.) 

 
Example utility equations and input data requirements of an MMNL model for 

approximating Brogden optimal classification using the Biogeme model file syntax and data 
format are described in Appendix B. 
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Empir ical (Sample Based) Optimal Classification Analysis 
 

In this section we draw insights from analytical results derived in the previous section to 
propose a more practical approach for conducting classification efficiency analysis. We will 
show that this approach can readily accommodate personnel classification policy constraints and 
applicant preferences, and provide a more accurate representation of the “true” distribution of the 
applicant pool. As such, it can produce more realistic results compared to the “exact” MVN and 
MMNL methods presented in the previous section. 

 
Limitations of a MVN Population Classification Model 

 
Brogden’s optimal classification method assumes that the sample size approaches infinity 

and that job criterion estimates are distributed as multivariate normal. In applications, MPP 
calculations are based on a multivariate normal population with mean and covariance computed 
from a large sample of criterion estimates. Both De Corte’s MVN implementation and our 
proposed MMNL approximation replaced the sample of criterion estimates from actual 
applicants with a multivariate normal population. In other words, both implementations use a 
smooth distribution to represent the true applicant distribution. 

 
Assuming a multivariate normal distribution for the criterion estimates made 

classification analysis mathematically tractable. There are two key problems with this approach, 
however. First, the true distribution of criterion estimates is usually not exactly normal. Because 
of the nature of optimization, the analysis can be sensitive to departures from normality, 
especially as the number of jobs increases. In Army applications with a very large applicant 
sample, discarding the sample data and instead using a multivariate normal distribution to 
approximate the distribution of applicant criterion estimates is wasteful, when the sample of 
criterion estimates computed from the data offers a more accurate representation of the true 
distribution.2

 

 Classification analysis that directly uses the sample of criterion estimates will be 
more robust to departures from normality. Second, it is difficult to mathematically include real 
world classification constraints, such as cut scores and gender restrictions, under the multivariate 
normal assumption. Classification analysis that can accommodate such constraints will give 
more realistic policy guidance. 

MNL Model for Optimal Classification 
 
We now obtain an approach for classification efficiency analysis that takes advantage of 

sample data (i.e., not based on an assumed mathematical distribution). We first derive a model 
that relaxes the multivariate normal distribution assumption for applicant criterion estimates 
without eligibility constraints. 

 
Implied MNL Model 

 
An empirical or sample data approach for optimal classification analysis is implied in the 

MMNL approximation model presented in the previous section. To derive this empirical 

                                                 
2 Classification efficiency is concerned with criterion estimates and not with actual criterion values. 
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approach we reexamine the system of nonlinear equations (3) used to represent job quota 
constraints under the MMNL approximation model. These equations are reproduced below: 

 

 
 

As mentioned earlier, these equations are equivalent to the first-order conditions for the 
Maximum Likelihood Estimator (MLE) of an ASC-only MMNL model with correlated “error 
components” (i.e., s) that are distributed as multivariate normal and observed job choice 
percentages given by s. We used this interpretation to derive the MMNL maximum likelihood 
approach for computing the job specific constants in the modified augmented criterion estimate. 
In the MMNL classification model, the population of applicant criterion estimates was 
represented by the multivariate normal distributed error components. To satisfy the job quota 
constraints, a synthetic estimation dataset was constructed with number of observations equal to 
number of jobs. Each observation in this dataset represents a unique chosen job, with observation 
weight equal to the corresponding job quota. 

 
When a large sample of applicants is available, we can replace the multivariate normal 

distributed error components in the left-hand-side (LHS) of the job quota constraint equations 
with the applicants’ criterion estimates. The original MMNL approximating model now becomes 
a simple MNL model with only job-specific constants. We construct the needed synthetic 
estimation dataset that satisfies the job quota constraints by: (a) replicating each applicant 
observation in the sample as many times as the number of jobs, with each replicate 
corresponding to the applicant choosing a unique job; and (b) setting the weight for each 
observation replicate to be equal to the quota for the job chosen in the replicate. The second step 
ensures that the job proportions of job “choices” in the synthetic estimation data correspond to 
the target job quotas. 

 
Replacing integration with respect to the MVN distribution with a summation over the 

sample observation replicates, the job quota constraint equations becomes 
 

 
 

(5)  

 
where  is the total sample size.3 Note that for each  the left-hand side is simply the average of 
the optimal assignment probabilities of applicants in the sample for the kth job. The preceding 
equations are the first-order conditions for an empirical MNL model with s as alternative-
specific predictors with fixed coefficient ( ), s as unknown ASCs, and s as observed 

                                                 
3 For given job k, the LHS involves the sum of weighted probabilities for the kth job across  observation 
replicates. However, since the weights for the m replicates of an applicant add up to one, the sum of weighted 
probabilities across observation replicates simplifies to the sum of probabilities across unreplicated observations as 
shown above.  
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job choice percentages. We can solve for the s by applying the maximum likelihood estimation 
for this MNL model using the aforementioned synthetic estimation data. 

 
To obtain the computational formula for the MPP under the empirical MNL 

approximation model, we examine the expression of the MPP under the MMNL population 
based approximation model: 

 

 
 
Again, replacing the integration with respect to the multivariate normal PDF  with 
summation over the sample data, we obtain the computational expression below for the MPP: 

 

 
 

(6)  

 
In other words, the MPP in the MNL model is simply the weighted average of criterion estimates 
across all applicants and jobs, with MNL optimal job assignment probabilities as weights. Note 
that the general form of this formula is the same as the formula for computing the average bonus 
in JCM models (Diaz, Ingerick, & Sticha, 2007b; Diaz, Sticha, Hogan, Mackin, & Greenston, 
2012). The difference is that here probabilities are derived from optimal assignment rules while 
the JCM probabilities were derived from actual applicant choices. 

 
Illustration Using Simulated Data 

 
We illustrate the MNL model for classification analysis using criterion estimates that 

were simulated from a multivariate normal distribution with zero mean and covariance matrix 
 

 
 

The Biogeme MNL model file and input data specification are described in Example 4 of 
Appendix B. Table 1 shows the job specific constants and job level and overall MPP obtained 
under the sample based MNL model for optimal classification analysis. For comparison, we also 
show the results obtained for the population based MVN and MMNL model for the correlated 
criterion estimates examples in Appendix B. The constants and MPP shown in Table 1 for the 
MVN population model were computed using implementation of De Corte’s method. The 
constants for the MMNL population model were computed using Biogeme with model and data 
files as specified in Example 2 of Appendix B. (We did not implement the procedure for 
computing the MPP under the MMNL approximation model. The MPPs under the MMNL model 
should be very close to those computed using the MNL sample based model.) The constants and 
MPP for the empirical MNL model were computed as described in this section. 
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Overall, calculated values for the job specific constants closely match across the three 

methods. The job level and overall MPPs calculated under the MVN population model and MNL 
sample based model also match very closely. These observations are not surprising since the 
sample data used in the MNL model were simulated from the same multivariate normal 
population assumed in MVN example. In the next examples we will compare the results of the 
empirical MNL model to results of the population based MVN and MMNL models when 
accounting for eligibility requirements. 

 

Table 1.Comparison of Sample Based MNL Results with Population Models 

Model Job1 Job2 Job3 Job4 All 
      
Job Specific Constants 
MNL 0.2719 0.1089 -0.1273 -0.2758  
MVN 0.2719 0.1204 -0.1298 -0.2625  
MMNL 0.2719 0.0966 -0.1300 -0.2730  
      
Mean Predicted Performance 
MNL 0.3947 0.5972 0.8438 0.7385 0.5796 
MVN 0.3996 0.5940 0.8484 0.7489 0.5827 
MMNL           

 
 

Including Applicant Eligibility Constraints 
 
Current applications of Brogden classification efficiency analysis ignore important 

personnel classification constraints, such as gender restrictions and cut scores. This limitation is 
inherent in a method that is mainly based on an assumed multivariate normal distribution. It can 
substantially impact the results of the analysis, depending on how the true distribution of 
criterion estimates differs from a multivariate normal distribution. For example, gender 
restriction makes combat jobs off limit to a sizeable subset of the applicant population, 
effectively reducing size of the optimization space. Therefore, ignoring this restriction will likely 
produce higher overall MPP than possible operationally. In practice, this could mean arriving at 
inaccurate or incorrect conclusions regarding the incremental classification efficiency potential 
of experimental predictor batteries for the full accession cohort or for specific jobs. In this 
section, we will generalize the sample data based job quota and MPP equations (5) and (6) to the 
case where applicant eligibility constraints are included in the problem. 

 
Modified MNL Model 

 
Limitations of the Brogden optimal classification approach related to applicant eligibility 

can be easily fixed using the empirical MNL optimal classification model. In an MNL model, as 
with all DCMs, the analysis data can include indicator variables identifying which alternatives 
were available to individual decision makers. Using these indicator variables, we can readily 
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include policy constraints related to applicant job eligibility in the MNL classification model. 
Making some jobs unavailable to some applicants requires adjustments to the weights of 
observation replicates to ensure that the proportions of “chosen” jobs are equal to the targeted 
job quotas. It also requires modification to the job quota constraint equations because only those 
applicants who are eligible for a given job contribute to the quota for the job. 

 
The adjusted replicate weights are constructed in two steps as follows. First, we obtain 

provisional replicate weights by proportionately allocating the contribution of an applicant to job 
quotas based on his eligibility profile. Using the indicator variable  to denote the ith 
applicant’s eligibility for the rth job, these provisional replicate weights are given by 

 

 
 
Note that  if the applicant is not eligible for the rth job. Second, we adjust the provisional 
weights so that the sum of the final replicate observation weights for the jth job is proportional to 
the quota for the job, yielding final replicate observation weights given by 

 
  

 
 ,  as desired. 

 
We can now construct the job quota constraint equations (i.e., first-order MLE 

conditions) for the MNL optimal classification model with applicant job eligibility constraints by 
summing probabilities across the  replicate observations, as follows: 

 
 

 
 

(7)  

 
The overall MPP is calculated under the modified MNL model with eligibility constraints 

by simply taking the weighted average of criterion estimates across replicate observations, with 
weights equal to the products of the optimal job assignment probabilities and replicate weights. 
This weighted average is of the form  

 

 
 

(8)  

 
The summation above is simply the sum of the product of applicant criterion estimates and their 
corresponding assignment probabilities, using only applicants eligible for each job. Note that the 
equations (7) and (8) simplify to equations (5) and (6) if each applicant is eligible for all m jobs. 
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Examples Using Actual Data 

 
We present illustrative examples of the sample based MNL optimal classification model 

using data from the Tier One Performance Screen (TOPS) initial operational test and evaluation 
study (Knapp & Heffner 2012). In these examples we evaluate the classification potential of 
ASVAB and TAPAS predictors for minimizing 6-month attrition in four MOS, under pure 
classification and selection-classification systems, while accounting for classification policy 
requirements. The two classification requirements considered are MOS minimum aptitude area 
(AA) score and gender restriction. Table 2 shows the four MOS, their minimum AA score 
requirement, and gender restriction. 

 
The initial steps in applying the MNL optimal classification model in this problem are as 

follows. The first step is to estimate the probability of 6-month attrition, the criterion estimate of 
interest, using data from each of the four MOS. To evaluate incremental classification efficiency 
of TAPAS beyond the ASVAB, we estimated two logistic models for each MOS, one using only 
ASVAB scores as predictors and the other using both ASVAB and TAPAS scores as predictors. 
The second step is to apply the estimated logistic models to a larger sample of applicants to 
obtain an empirical distribution of criterion estimates in the applicant population. We used a 
large sample of accessions (n=62,155) from the TOPS study to represent the applicant input. 
Table 2 shows the sizes of MOS samples used to develop the 6-month attrition logistic 
probability models, observed attrition in the sample, and pseudo R2 of the estimated models 
under the two sets of predictors corrected for restriction in range relative to the full sample.4

 

  
Overall observed attrition for all four MOS combined is 11.5%. 

Note that with attrition probabilities as criterion estimates, the normal distribution 
assumption in de Corte’s approach no longer holds. To get around this problem, Trippe, Diaz and 
Ingerick (2012) used the linear predictor function in the logistic model to determine optimal 
classification of applicants. They then evaluated the mean attrition for each MOS by taking 
expectation with respect to the distribution of linear predictors of optimally classified applicants 
in each MOS. This is a reasonable approach because the linear predictor is monotonically related 
to the probability of attrition. Because the linear predictor is a weighted sum of continuous 
variables (i.e., ASVAB and TAPAS scores) the normal distribution assumption is also tenable. 

 
Under the MNL optimal classification model the distribution of the criterion estimates is 

determined empirically from sample data. Therefore it is possible to directly use attrition 
probability estimates to determine the optimal classification of applicants. In the first set of 
examples below, applicants are classified using the linear predictor under four classification 
conditions based on rejection rate and classification policy constraints. These conditions are 
shown in Table 3 in order of increasing number of constraints. In the second set of examples 
applicants are classified directly using attrition probability estimates. 

 
 

                                                 
4 Correction for restriction in range was carried out by applying McKelvey and Zavoina (1975) pseudo R2 to the full 
sample, , where  is the linear predictor of the logistic model . 
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Table 2. Eligibility Requirements and 6-Month Attrition for Selected MOS 

  Eligibility Conditions   6-Month Attrition 
    Actual 

Attrition 
Model Pseudo R2 

MOS Cut Score Gender   N ASVAB ASVAB+TAPAS 
11B CO>=87 Male Only  4702 12.14 0.0257 0.0710 
31B ST>=91 NA  264 12.12 0.0851 0.2130 
68W ST>=101 NA  990 8.08 0.0470 0.1203 
88M OF>=85 NA   662 11.33 0.0466 0.1572 

 

Table 3. Classification Conditions 

Reject Eligibility Description 
0% None Pure classification, ignoring cut scores and gender restriction 
10% None Selection-Classification, ignoring cut scores and gender restriction 
10% CS Selection-Classification, enforcing MOS cut scores only 
10% CS + (11B Male) Selection-Classification, enforcing MOS cut scores and gender 

restriction 
 
Table 4 shows the mean 6-month average attrition estimate for the entire sample and by 

MOS when applicants are optimally classified using the linear predictor under different 
conditions and predictors, with allocation percentages of 46.2%, 18.9%, 22.9%, and 13.0%, for 
11B, 31B, 68W, and 88M, respectively. The table is organized to facilitate comparison of results 
between classification conditions for a given set of predictors. Compared to actual attrition 
percentages in the sample, optimally classifying applicants using only ASVAB scores with no 
policy constraints produced substantial improvements in mean attrition probabilities for the 
entire sample and by MOS except for 11B. This result is not surprising given that 11B accounts 
for close to half of the sample and has a pseudo-R2 that is practically zero.  

 
Rejecting 10% of applicants and optimally classifying the remaining 90% with no 

constraints reduced overall and MOS attrition probabilities by about half percentage point.5

                                                 
5 A small rejection rate of 10% was used because 3% of accessions do not qualify for any of the four MOS when 
using both cut score and gender eligibility constraints. 

 
Adding a cut score constraint when classifying 90% of the applicants increased overall attrition 
from 8.0% to 8.1%. While negligible this is the anticipated direction in mean attrition due to 
addition of the cut score constraint. Note that mean attrition for 68W increase from 6.0% to 6.1% 
while mean attrition for 31B increase from 5.6% to 5.8%. Again, while negligible, changes 
observed for 31B and 68W are meaningful given that both MOS use the same AA composite 
(ST), with 68W having the higher cut score (ST>=101) compared to 31B (ST>=91). In other 
words, 31B and 68W more directly compete with each other than with 11B and 88M, with 68W 
having priority to better applicants (with ST >=101) compared to 31B. Including a gender 
restriction in addition to the cut score constraint produced an additional increase in overall 
attrition, from 8.1% to 8.2%, with 11B having the largest increase (10.5% to 10.8%) as expected. 
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Table 4. Summary of Classification Potential of the ASVAB and TAPAS for Minimizing 6-
Month Attrition Using Logistic Linear Composite Optimal Classification by Condition 

Reject Eligibility 11B 31B 68W 88M ALL 
ASVAB Only           

0% None 11.1 6.0 6.5 6.6 8.5 
10% None 10.5 5.6 6.1 6.2 8.0 
10% CS 10.5 5.8 6.0 6.2 8.1 
10% CS + (11B Male) 10.8 5.8 6.1 6.3 8.2 

ASVAB+TAPAS      
0% None 12.1 3.6 5.3 3.3 7.9 
10% None 10.7 3.2 4.7 2.9 7.0 
10% CS 10.9 3.3 4.7 3.0 7.1 
10% CS + (11B Male) 11.1 3.4 4.8 3.1 7.3 

Incremental Efficiency of TAPAS Over ASVAB   
0% None -1.0 2.4 1.2 3.3 0.7 
10% None -0.2 2.5 1.4 3.2 1.1 
10% CS -0.4 2.5 1.3 3.3 1.0 
10% CS + (11B Male) -0.4 2.5 1.3 3.2 1.0 

 
The second set of results in Table 4 summarizes the potential classification benefits of 

using both TAPAS and ASVAB scores on 6-month attrition. Optimally classifying applicants 
using TAPAS and ASVAB scores yielded substantial reduction in average attrition over the 
classification model based only on ASVAB for the entire sample and by MOS with exception of 
11B. The reduction in estimated attrition rate is substantial (about 50%) for MOS 31B and 88M 
across all conditions. MOS 68W showed a modest decrease in estimated attrition. The estimated 
attrition for MOS 11B unexpectedly went up by less than one percentage point across all 
conditions. The general pattern of small increases in attrition rates as cut score and gender 
restriction constraints are included in the classification model is the same as those observed in 
the model using only ASVAB. 

 
Table 5 shows the mean 6-month attrition probabilities for the entire sample and by MOS 

when applicants are optimally classified directly using attrition probability estimates based on 
the logistic model. The first set of results in Table 5 shows the potential classification benefits of 
using only ASVAB scores as predictors under different conditions. Using the logistic probability 
estimates of attrition to optimally classify applicants produced approximately the same estimated 
attrition rates for the overall sample across conditions, compared to classification based on the 
linear predictor. The estimated attrition rates by MOS when classifying using attrition probability 
estimates are also generally comparable to the attrition rates when classification is based on the 
linear predictor (see Table 4). However, the attrition rates for MOS 31B, 68W, and 88M increase 
by about a half percentage point, while the attrition rates for MOS 11B decrease by 0.6 to 0.9 
percentage points. 
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Table 5. Summary of Classification Potential of the ASVAB and 
TAPAS for Minimizing 6 Month Attrition Using Logistic 
Probability Optimal Classification by Condition 

Reject Eligibility 11B 31B 68W 88M ALL 
ASVAB Only           

0% None 10.2 6.5 7.3 6.9 8.4 
10% None 9.9 6.0 6.7 6.4 8.0 
10% CS 9.9 6.1 6.5 6.6 8.0 
10% CS + (11B Male) 10.1 6.2 6.7 6.7 8.2 

ASVAB+TAPAS      
0% None 9.7 4.9 6.4 5.1 7.5 
10% None 9.0 4.1 5.5 4.1 6.7 
10% CS 9.1 4.3 5.4 4.4 6.8 
10% CS + (11B Male) 9.2 4.4 5.6 4.5 6.9 

Incremental Efficiency of TAPAS Over ASVAB   
0% None 0.5 1.6 0.9 1.8 1.0 
10% None 0.9 1.9 1.2 2.4 1.3 
10% CS 0.8 1.9 1.2 2.2 1.2 
10% CS + (11B Male) 0.9 1.8 1.1 2.2 1.3 

 
The second set of results in Table 5 summarizes the potential classification benefits of 

using both TAPAS and ASVAB scores on 6-month attrition when applicants are classified 
directly using attrition probability estimates.  Compared to classifying applicants using the linear 
predictor, the overall attrition estimates are lower by about 0.4 percentage points when 
classifying applicants directly using the estimated attrition probabilities. At the MOS level, 
attrition rates for MOS 31B, 68W, and 88M increased, approximately 1 to 2 percentage points, 
while the attrition rates for MOS 11B decreased by 1.7 to 2.4 percentage points, when classifying 
applicants using attrition probability estimates compared to classifying using linear predictor. 

 
Comparing the results for the two sets of predictors in Table 5 shows that optimally 

classifying applicants using TAPAS and ASVAB scores yielded substantial reduction in average 
6-month attrition for the entire sample and all MOS over the classification model based only on 
ASVAB. Note that unlike classification using the linear predictor, classifying applicants using 
the estimated attrition probability shows that MOS 11B also benefits from the inclusion of 
TAPAS in addition to the ASVAB, along with a higher incremental improvement for the entire 
sample. In other words, classifying applicants directly using attrition probability estimates 
produced stronger evidence of classification efficiency compared to classification using the 
linear predictor. 

 
Using a linear predictor appeared to have favored MOS with lower estimated attrition 

probabilities (or higher probabilities of completing the first term) at the expense of MOS 11B. 
This “bias” is likely due to the fact that a linear predictor is no longer linearly proportional to 
logistic probability estimates for completing the term in the upper tail of the distribution. For the 
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same differences in linear predictors in the tails and middle portion of the logistic model, the 
corresponding differences in probabilities between jobs are small. Therefore, classifying 
applicants using a linear predictor would tend to prioritize better applicants to jobs with lower 
attrition estimates even if they can contribute better to lowering overall attrition in jobs with 
higher attrition. Figure 1 graphically shows the bias of classification using a linear predictor 
(solid lines) over direct classification using attrition probability estimates (dashed lines). Direct 
classification shifted the distribution of attrition probability estimates for MOS 31B, 68W, and 
88M to the right, with a corresponding shift to the left in the distribution for MOS 11B. The net 
effect of these shifts is higher overall classification efficiency, as noted in observations from 
Tables 4 and 5. 

 
In sum, we applied the MNL optimal classification model to evaluate the potential 

classification efficiency of ASVAB and TAPAS when classification policy constraints are 
included in the model. While the differences in average attrition estimates as policy constraints 
were included in the classification model were negligible, the pattern of changes were consistent 
with anticipated effects of the cut score and gender restriction on the MOS in the example. We 
expect these effects to be stronger with more valid criterion models and greater differentiation in 
classification policy. For example, cut score policy differentiation between MOS 31B (ST>=91) 
and 35T (ST>=112) is greater compared to that between MOS 31B and 68W (ST>=91). We also 
demonstrated that, unlike de Corte’s implementation of Brogden classification, the empirical 
MNL optimal classification model is not dependent on approximately normally distributed 
criterion estimates. Classifying applicants directly using estimated attrition probabilities yielded 
more accurate and stronger evidence of incremental classification benefits of TAPAS over 
ASVAB for minimizing 6-month attrition. 
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Figure 1. Comparison of 6-Month Attrition Probability Distributions Under Optimal 
Classifications Using Linear Predictor and Logistic Probability with 10% Rejection and 
Cut Score and Gender Restriction 
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Hybr id Optimal Classification-Choice Model 

 
We briefly describe a hybrid optimal classification model that includes applicant 

preferences. Using a utility interpretation, we can further modify the augmented criterion 
estimate to allow applicant preferences to affect the optimal classification solution. For example, 
letting  represent the incentive for the jth job that the ith applicant is eligible for, the 
augmented criterion estimate can be modified as follows so that classification optimization is 
conditional on applicant preferences for the incentives:  

 

B is a fixed parameter in the MNL model, with unknown constants s that will be computed to 
satisfy the job quota constraints for given scale parameter. Note that the additional term  
dilutes the effect of the original criterion estimate, , in identifying the job that will provide the 
greatest contribution to the average predicted criterion estimate of applicants. Instead of 
maximizing the criterion estimates s subject only to job quota constraints, the modified 
classification rule would classify an applicant to a job with lower predicted criterion estimate if 
the applicant’s preference for the incentive offered is relatively higher. 

 
We outline below a general approach for carrying out this hybrid model for solving an 

optimal classification problem conditional on applicant preferences for incentives. First, using 
data with actual applicant job choices and incentives s, estimate a job choice model with 
utility equations   

 

 represents the “observed classification effect” in the data. In previous studies, we found 
statistically significant classification effects for AA scores of applicants (Diaz, Ingerick, & 
Sticha, 2007a; Diaz, Ingerick, & Sticha, 2007b; Diaz, Sticha, Hogan, Mackin, & Greenston, 
2012). Unlike in the classification problem, the constants s represent average preferences not 
explained by the incentive and classification composite. Next, expand the modified augmented 
criterion estimate as 

 

, where  is the coefficient of the incentive estimated from the choice model.  This expanded 
augmented criterion estimate is equivalent to the scaled utility equation for the MNL model, 
where  is known and fixed and s are job specific constants that satisfy the quota constraints. 
As before, these job specific constants can be solved using standard MNL estimation procedures. 
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Conceptually, the coefficient  in the expanded augmented criterion estimate represents 
the dilutive effect of incentives in the hybrid classification model. Setting the scale constant to  
will induce an optimal classification model in which the effect of applicant preferences for 
incentives relative to criterion estimates is equal to that observed in the data. This classification 
model will in fact be equal to the choice model except that the job specific constants are 
determined to satisfy target job quota constraints instead of the observed job choice proportions. 
We can use the scale constant to impose realistic limits to potential classification benefits or 
effectiveness of composites or predictors. Scale values larger than  presume classification 
effects that are greater than observed. Setting the scale constant to extremely large enough values 
would effectively eliminate the effects of incentives in the classification. From a practical view, 
the important point is that competing policies, such as incentive programs, can potentially limit 
the classification benefits of alternative predictors for maximizing average performance. The 
scale constant provides a mechanism for imposing this limit if desired. Conversely, the hybrid 
model can also inform how alternative incentive policies affect average predicted performance of 
applicants. 

 
 

Discussion and Recommendations 
 
In this research we showed how the Brogden classification framework can be formulated 

using a DCM framework. We first specified a MMNL classification model that is analytically 
comparable to the MVN-based solution proposed by de Corte. To obtain the MMNL 
classification model, we rescaled the augmented criterion estimates proposed by Brogden using 
an arbitrarily large constant and then added independent standard Gumbel errors. This 
transformation produced modified augmented criterion estimates with the same structure as the 
utility equations in a MMNL model with error components corresponding to the original 
criterion estimates. Taking advantage of the similarity in interpreting job specific constants, we 
showed analytically and by numerical examples that the constants that satisfy the job quota 
constraints in Brogden’s classification problem can be obtained using the standard MMNL 
model estimation method. We also showed how to specify a MMNL selection-classification 
model by interpreting the modified augmented criterion estimates as utility equations and 
applying random utility maximization. 

 
We also proposed an empirical or sample based MNL classification model for evaluating 

potential classification efficiency that accommodates personnel classification policy constraints 
and is robust with regard to the form and distribution of criterion estimates. For classification 
problems where a large amount of applicant data is available, the empirical distribution of 
criterion estimates is a more accurate representation of the true distribution in the applicant 
population. The MNL classification model produced classification probabilities by fractionally 
weighting individual applicants to different jobs to obtain the highest overall predicted criterion. 

 
We illustrated the sample data based MNL optimal classification model by evaluating the 

classification efficiency potential of ASVAB and TAPAS for minimizing 6-month attrition in 
four MOS under pure classification and selection-classification models and varying classification 
policy requirements using data from the TOPS study. While changes in estimated attrition due to 
inclusion of cut scores and gender restriction were negligible, their directions were consistent 
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with anticipated effects of the policy constraints. We expect these effects to be stronger with a 
more valid criterion model and greater differentiation in eligibility constraints among jobs. The 
6-month attrition example showed that the choice of classification composites can substantially 
affect the results of optimal classification analysis. Using the linear predictor in the logistic 
model as a proxy for attrition probability estimates produced somewhat lower overall 
classification efficiency compared to direct classification using attrition probability estimates, 
and inaccurately indicated that TAPAS does not provide incremental classification benefit for 
MOS 11B beyond the ASVAB. The same inaccurate indication is expected from the MVN 
distribution based analytic approach of de Corte, using a linear predictor as the best MVN 
distributed proxy for the attrition probability estimate. 

 
The constant  used to scale the modified criterion estimates can have varying theoretical 

and practical implications in applications of the MNL classification model. On one extreme, as 
the scale approaches zero, the Gumbel error term will dominate the modified augmented 
criterion estimate, producing classification that would be close to random. On the other extreme, 
as the constant becomes large, the elements in the optimal classification probability matrix in the 
MNL classification model would generally approach ones or zeroes, assuming criterion estimates 
are continuous variables. This probability matrix of ones and zeroes is comparable to the 
decision matrix in a binary integer linear programming (BILP) model for matching applicants to 
jobs to maximize the average predicted criterion. In other words, the empirical MNL 
classification model converges to the BILP model as the scale constant increases to infinity. For 
values not large enough to produce classification probabilities of ones or zeroes, the scale 
constant has a practical interpretation as a parameter of “classification uncertainty.” This 
uncertainty may be viewed as unreliability or measurement errors of criterion and predictor 
variables. It can also be related to shrinkage corrections to obtain cross-validated prediction 
results. These interpretations can be used to specify a scale constant that will produce the desired 
correction due to unreliability and/or shrinkage when evaluating the potential classification 
efficiency of predictors. 

 
We also outlined a hybrid classification-choice model for evaluating the classification 

potential of predictors that accounts for applicant preferences. In real world classification, 
applicant preferences for incentives can potentially limit the classification benefits of alternative 
predictors. The hybrid approach provides a mechanism for imposing this limit if desired. 
Conversely, the hybrid model can also inform how alternative incentive policies affect average 
predicted performance of applicants. 

 
In sum, the DCM provided an alternative framework for carrying out Brogden’s optimal 

classification of applicants to jobs. The mathematical population based MMNL model specified 
in this research provides a computationally more convenient alternative to the MVN based 
method for evaluating potential classification efficiency. The sample data based MNL model is 
more robust with respect to distributional assumptions about the criterion estimates and can 
easily accommodate policy constraints, thereby producing more accurate results with respect to 
potential classification efficiency of alternative predictors. Lastly, concepts underlying the DCM 
based framework for classification can be applied to develop a hybrid classification-choice 
model that can be used to add realism to optimal classification analysis (e.g., by considering the 
effects of enlistment incentives and applicant job preferences). 
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Appendix A: Der ivations Under  Modified Augmented Cr iter ion 
 

Job Quota Constraints Equation 
 
We begin by specifying , the probability that the kth job of a randomly selected 

applicant has the highest modified augmented criterion under the modified optimal classification 
algorithm. Using s for classifying applicants, the optimal job is determined jointly by 

 and . We use conditional probability in our derivation 
below to break the joint probability of  into manageable parts.  

 
Conditioning on  and integrating over all possible values , the probability that 

the kth job has the highest modified augmented criterion estimate is obtained as follows: 
 

for , we obtain the system of nonlinear equations below, with variables s, 
representing job quota constraints under the modified classification algorithm: 

 

 
 

 
MPP Equation 

 
We derive , the PDF of the estimated criterion score corresponding to the optimal 

job of a randomly chosen applicant under the modified classification algorithm. To begin, we 
note that conditional on observing the m criterion estimates,  

 

 is the MNL probability defined earlier and  is an indicator function that evaluates to one 
if  and zero otherwise. The first line above simply means that the PDF of   given 

 is the probability that the optimal predicted criterion score can be anyone of the m 
observed predicted criterion scores. The indicator function  ensures that  
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evaluates to non-zero probabilities only at the observed criterion estimates (i.e., ). The 
second line is obtained by noting that  implies .  

 
Using the above conditional probability representation, we derived below the 

unconditional PDF of . To facilitate the derivation below, we partition the vector of criterion 
estimates into the scalar , representing the criterion estimate for the kth job, and the (m-1) 
vector , representing all other criterion estimates. Again, by conditioning on  and 
integrating over all possible values , we can derive  as follows: 

 

 
 
Again,this PDF involves the unknown job specific constants as parameters. To completely 
specify  we need to solve the job quota system of nonlinear equations for s. 

  
After completely specifying  we can evaluate the MPP under the modified optimal 

classification algorithm using 
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Appendix B: Biogeme MMNL Model Approximation Examples 
 
The following examples describe the utility equations and input data requirements of an 

MMNL model for approximating Brogden optimal classification using the Biogeme model file 
syntax and data format. In these examples we will evaluate the classification efficiency of a 
predictor battery for four jobs. We will assume that the predicted criterion estimates have been 
standardized and that we have available the covariance (correlation) across the four jobs. The 
three examples below demonstrate the MMNL approximation for Brogden optimal classification 
depending on the structure of the predictor covariance/correlation and type of problem, whether 
classification-only or simultaneous selection-classification. 

 
Example 1: Classification with Uncorrelated Predictors 

  
This example shows how to specify an MMNL model and input data to approximate 

Brogden’s optimal classification when predictors are uncorrelated and the accession rate is 100 
percent (i.e., pure classification problem). For this problem, assume that the predicted criteria are 
uncorrelated across jobs with squared-validities equal to 0.50, 0.60, 0.70, and 0.50 and the target 
job allocations are 40%, 30%, 20%, and 10%. 

 
The top part in Figure 1 shows sections of the Biogeme model file specifying an MMNL 

model for approximating an optimal classification problem with four jobs and uncorrelated 
predictors. The section labeled [Utilities] specifies the utility equations for the four jobs 
(alternatives), with each row representing one job. The first three columns provide, respectively, 
unique ID numbers for identifying the “chosen alternative” in the input data file, unique 
alphanumeric labels for identifying alternatives in Biogeme’s output, and the name of the 
variable in the input data file that indicates “availability” of each alternative. The last column 
(shown in bold text) describes the utility equations using a parameter×variable syntax. Using this 
syntax, the term “ ” represents the job-specific constants for the first job, where  
is the (fixed) job specific constant parameter and “ ” is a variable whose constant value 
(equals 1) is specified under the [Expressions] section of the model file. The criterion estimates 
are represented by the error component terms using the syntax  “ ” 
where the string “ ” represents a random parameter with mean  and 
standard deviation .  
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Figure B-1. Model File and Input Data for Approximating a Classification Problem with 
Uncorrelated Predictors 

Selected Sections of the Model File: 
 

Input Data: 
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The section labeled [Beta] describes how parameters are handled during estimation. The 

first column identifies the parameters in the utility equations. The next three columns specify 
starting values and bounds for the parameters, while the last column indicate whether the value 
of a parameter will be fixed at the specified starting value (status=1) or will be estimated in the 
problem (status=0). For approximating Brogden’s optimal classification, the only parameters in 
the MMNL model to be estimated are the job specific constants (i.e., ASC).6 The means and 
variances of the criterion estimates (error components in the utility equation) are usually 
computed separately from analysis data. For this example, the predictors have means all equal to 
zero and standard deviation 0.707107, 0.774597, 0.836660, and 0.707107 (i.e., validities 
corresponding to  values of 0.50, 0.60, 0.70, and 0.50). 

 
The last two sections in the model file, [Group] and [Scale], are used to specify the 

arbitrary value of the scaling parameter . In normal applications of Biogeme, these two sections 
are used in combination to specify a scale heterogeneous model (i.e., with different scales across 
groups of observations or applicants). For our particular problem, we use these sections to 
specify an arbitrary scale for the entire data, as follows. The expression (

) under the [Group] section evaluates to 1 for all four observations/jobs (see following 
discussion), effectively specifying a single scale for all four jobs. This scale is specified as a 
fixed parameter under the [Scale] section. For this example we are using . 

 
The bottom part in Figure 1 shows the desired format of the input data for the MMNL 

model approximation in this example. The first row identifies the variables corresponding to the 
columns in the data. The data shown in Figure 1 is in weighted form, with each row observation 
representing a portion of the estimation data. Instead of showing individual observations (as in a 
JCM estimation problem), this data format describes the distribution of applicants who “chose” 
(or will be assigned to) each job. The “chosen” job represented in each row is identified under 
the  column, while the percentage of applicants who “chose” each job is given under the 

 column. To obtain estimated ASCs that satisfy the job quota constraints, we specify 
weights that are equal or proportional to the quota percentages of the job corresponding to each 
row. In this example, the job quota constraints are 40%, 30%, 20%, and 10%, respectively, for 
jobs 1, 2, 3, and 4. Therefore, we created a choice data with applicant job choice percentages 
equal to these values. 

 
Example 2: Classification with Correlated Predictors 

 
This example shows how to specify an MMNL model and input data to approximate 

Brogden’s optimal classification when predictors are correlated and the accession rate is 100 
percent (i.e., pure classification problem). We will use the same set of job quota constraints, 
40%, 30%, 20%, and 10%, as in the first example, but specify the job predictor covariance  

 

                                                 
6 Note that normalization involves fixing the value of one of the ASCs. In this example we fixed the ASC for the 
first job at the final estimated value obtained using our implementation of De Corte’s method. Our implementation 
of De Corte’s method did not set the constant for the first job to zero, as he recommended. In order to make direct 
comparison between the constants obtained under the two methods, we fixed the ASC in the approximating MMNL 
model to that obtained using the multivariate normal approach. 
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Figure 2 shows the required Biogeme MMNL model file when criterion estimates are 

correlated. Because we are using the same job quota constraints as in the first example, the 
required input data will be the same as that shown in Figure 1. The utility equations specified in 
Figure 2 involve job-specific constants and random error components with longer expressions, 
which are based on the Cholesky decomposition of the covariance matrix  where  is a 
lower triangular matrix with positive diagonal entries. This factorization is often used to 
construct or generate a random vector with specified covariance from independently distributed 
random variables. For example, if   is a random vector with elements that are 
independently distributed as standard normal, then  is a random vector that is distributed 
as multivariate normal with zero mean and variance .  

 
In Figure 2 the error components in the utility equations are just the rows in the 4-

dimensional vector  obtained below: 
 

 
 
The values of the elements of the lower triangular matrix s) are specified under the section 
[Expressions] as variables with fixed values across observations. The standard normal random 
variables s are specified using Biogeme’s random parameter syntax (e.g., , 

, etc). 
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Figure B-2. Selected Sections of the Model File for Approximating a Classification Problem 
with Correlated Predictors 
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Example 3: Selection-Classification with Correlated Predictors 

  
This example shows how to specify an MMNL model and input data to approximate 

Brogden’s optimal classification when predictors are correlated and the accession rate is less 
than 100 percent (i.e., selection-classification problem). For this example we will use a rejection 
rate of 30% and distribute the remaining 70% using the percentages in the first two examples. 
This allocation produces job quota constraints of 28%, 21%, 14%, and 7% for the four jobs and 
30% for the dummy job for non-accession. We also specify criterion predictor correlations using 
the covariance matrix given in the second example. 

 
Figure 3 shows the [Beta] and [Utilities] sections in the Biogeme model file and the input 

data needed for solving the selection-classification problem using an MMNL model. In 
specifying the Biogeme model file, we simply modified the model file used in the second 
example by adding the utility equation for the non-accession job. The input data is also modified 
by adding a fifth observation with weight equal to the rejection rate and setting the weights for 
the other four observations to 28%, 21%, 14%, and 7%. All other components of the model file 
are the same as in Figure 2. 
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Figure B-3. Selected Sections of the Model File and Input Data for Approximating a 
Selection-Classification Problem with Correlated Predictors 

Selected Sections of the Model File: 

Input Data: 
 

 
 

Example 4: Empirical (Sample Based) MNL Classification Model 
 

Figure 4 shows relevant sections of the Biogeme model file and the structure of the input 
data for carrying out the MNL classification model analysis using criterion estimates that were 
simulated from a multivariate normal distribution with zero mean and the same covariance 
matrix as in the Example 2. There are two main changes in Figure 4 compared to the MMNL 
model files in Example 2. First, individual applicant criterion estimates observations (X1, X2, 
X3, X4) are directly included in the model, instead of being represented as error components. 
Second, actual sample applicant observations comprised the input data, with each observation 
replicated as many times as the number of jobs using job quota percentages as replicate weights. 
Technically, the sample observations are used as “grid points” for the empirical distribution 
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represented by the sample data.7  Note that correlation of criterion estimates are implicitly taken 
care of by the sample data. As before, we use a large value for the scale parameter ( ) to 
ensure that differences between criterion estimates drive the assignment algorithm. 

                                                 
7 Under the simulated MLE algorithm for the MMNL approximation method, the grid points correspond to the 
random values generated to approximate the multivariate normal distribution of the error components/criterion 
estimates. 
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Figure B-4. Selected Sections of the Biogeme Model File and Input Data for the MNL 
Classification Efficiency Analysis Model 

Selected Sections of the Model File: 
 

Input Data: 
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